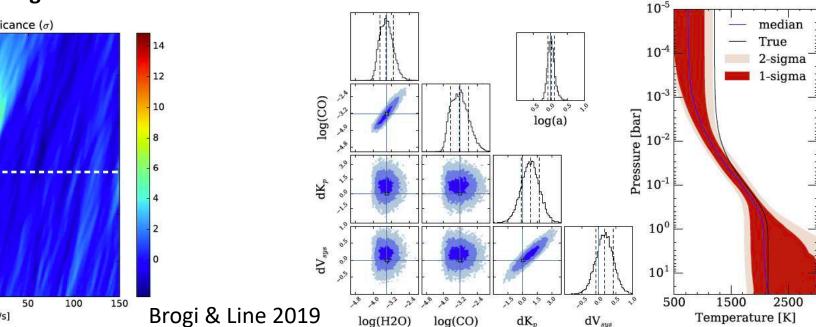

Hands-on: Exoplanet atmospheres with SPIRou

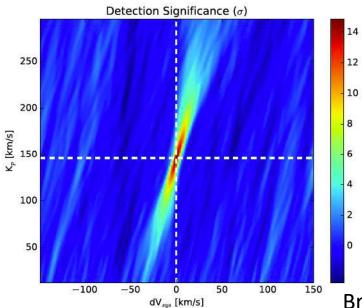
Baptiste Klein, Benjamin Charnay & Florian Debras

Ecole Evry Schatzman 2021

Atmospheric characterisation at high spectral resolution


for transit spectroscopy

- Distinguish planetary signal from telluric and stellar lines thanks to intrinsic molecular lines and doppler shift
- Cross-correlation between the high-passing observed spectrum S_{obs} and a model spectrum S_{th}


$$CCF(dV_0) = \sum_{i} \frac{S_{obs}(v_i) \times St_h(v_i + v_i \times dV_0/c)}{\sigma_i^2}$$

2

Atmospheric characterisation with MCMC calculation from cross-correlation at HR

Detection of a planetary signal from cross-correlation at high resolution

Objectives of the hands-on session

<u>Goals:</u>

- Detect the planetary signal and molecules from two exoplanets (a hot Jupiter and a warm sub-Neptune), whose signal has been injected in SPIRou data
- Test the influence of the planetary rotation and atmospheric superrotation

Methods:

- 1) Inject the planetary signal in SPIRou data of GI15A
- 2) Data reduction to remove telluric and stellar contamination
- 3) Retrieve the planetary signal and molecules

$$F_{in}(t,\lambda) = T_{atm}(t,\lambda) \times F_{star}(t,\lambda) \times \left(1 - \left(\frac{R_p(\lambda)}{R_{star}}\right)^2\right)$$

Flux during Atmospheric Stellar flux Transit depth transmission

Key steps are:

- Division by the out-transit spectrum: $F_{out}(t, \lambda) = T_{atm}(t, \lambda) \times F_{star}(t, \lambda)$
- Division by the smoothed spectrum
- Detrending with airmass and filtering correlated noise with PCA
- Cross-correlation with model spectra

Jupyter notebook

- > Download the notebook and all files at: <u>https://github.com/baptklein/Tutorial_atmosphere</u>
- > For your laptop, you need: python (version 3 preferentially) jupyter, astropy and scipy
- > Otherwise, use sciserver (https://apps.sciserver.org/dashboard/): create an account and upload all files in tmp.

	Deptklein / Tutorial_atmosphere				
	<> Code	ⓒ Issues ११ Pull requests 🕑	Actions 🔟 Projects 🖽 Wiki 🛈 Se	ecurity 🗠 Insights	
		🐉 main 🗸 🐉 1 branch 📀 0 tags		Go to file Code -	
SPIRou data of GI15A		baptklein Add files via upload		e5bc519 21 hours ago 🕚 2 commits	
		Data/T_files	Add files via upload	21 hours ago	
		Model	Add files via upload	21 hours ago	
		🗅 README.md	Initial commit	22 hours ago	
Planetary spectra and molecular templates		Correlation.py	Add files via upload	21 hours ago	
		🗅 main.ipynb	Add files via upload	21 hours ago	
		🗅 plots.py	Add files via upload	21 hours ago	
		🗅 src.py	Add files via upload	21 hours ago	
		Transit_flux.dat	Add files via upload	21 hours ago	

Injected planets

GI15A:

SPIRou data (PI: Donati), date: 2020-10-08 Spectral type= M2 Mag(K) = 4.02

R_{star}=0.386R_{Sun}

V0 = 11.73 km/s #Stellar Systemic velocity

Hot Jupiter:

R _p =10.9 R _{Earth}	
T _{eq} =1500K	
Metallicity= 1xsolar	
Ks = 154 km/s	#Planet semi-amplitude
P _{orb} = 2.22 d	#Planet orbital period

Equilibrium temperature:

 $T_{eq}^{4} \propto a^{-2}$

Planet semi-amplitude:

$$K_{\rm p} = \sqrt{GM_s/a} \propto a^{-0.5}$$
$$\implies K_{\rm p} \propto T_{eq}^{-1}$$

Warm sub-Neptune:	
$R_p = 3 R_{Earth}$	
$T_{eq} = 600K$	
Metallicity = 30xsolar	
Ks = 62 km/s	#Planet semi-amplitude
$P_{orb} = 2.22 d$	#Planet orbital period

Variation of transit depth: $\Delta \delta_{tra} \propto \frac{R_P H}{\Gamma^2}$

For GI15A :

- Hot Jupiter (T=1500 K, g=25 m s⁻², M=2.3 g/mol): $\delta_{tra} \approx 0.07$, $\Delta \delta_{tra} \approx 2.10^{-3}$ Warm Neptune (T=600 K, g=10 m s⁻², M=3.0 g/mol): $\delta_{tra} \approx 5.10^{-3}$, $\Delta \delta_{tra} \approx 4.10^{-4}$

Atmospheric model

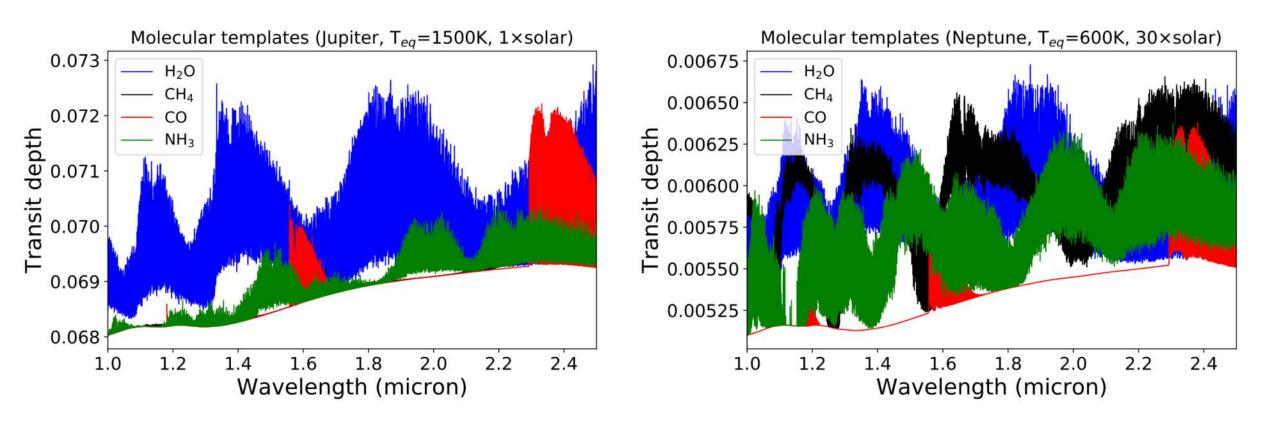
Calculation of TP profiles and chemical composition with Exo-REM

Exo-REM model:

- 1D radiative-convective model
- Iterative model
- non-equilibrium chemistry
- opacities with kcoefficients
- Clouds with simple microphysics or fixed radii
- Emission/transmission spectra (R=50-20000)

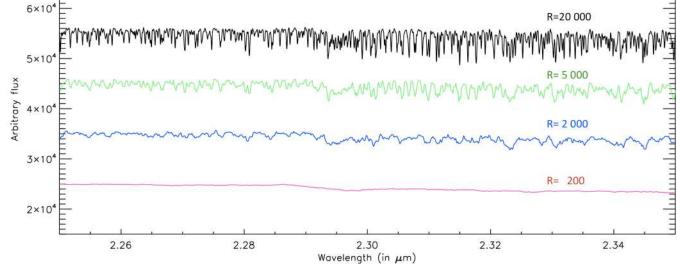
(Baudino et al. 2015, Charnay et al. 2018, Blain et al. 2020)

Exo-REM available at: https://gitlab.obspm.fr/dblain/exorem


¹² CH ₄	Species	Wavenumber range (cm ⁻¹)	$\frac{\Delta \nu}{(\mathrm{cm}^{-1})}$	Intensity cutoff (cm·molecule ⁻¹)	Lines references
	CH ₄	30 - 13330	250	10-36 at 2000 K	TheoReTS (1)
	H_3D CO CO ₂ FeH H ₂ O	30 - 8330	120	10 ⁻²⁷ at 3000 K	HITEMP (2)
		30 - 8130	120	10 ⁻²⁵ at 3000 K	HITEMP (2)
		30 - 14830	120	10 ⁻³⁰ at 4000 K	ExoMol (3)
1		30 - 26430	120	10-27 at 2000 K	HITEMP (2)
1	H_2S	30 - 10830	120	10-27 at 2000 K	ExoMol (4)
	HCN	30 - 12530	120	10 ⁻²⁵ at 3000 K	ExoMol (5)
	K	1030 - 50030	9000	10 ⁻²⁷ at 2500 K	NIST (6)
Na NH PH ₃	Na	1030 - 50030	9000	10 ⁻²⁷ at 2500 K	NIST (6)
	NH ₃	30 - 11830	120	10-30 at 1500 K	ExoMol (7, 8)
	PH ₃	30 - 9830	120	10 ⁻³⁰ at 2500 K	ExoMol (9)
2	TiO	230 - 29230	120	10 ⁻³⁰ at 4000 K	ExoMol (10)
- 20	VO	30 - 19830	120	10 ⁻³⁰ at 4000 K	ExoMol(11)

References. (1) Rey et al. (2017); (2) Rothman et al. (2010); (3) Bernath (2020); (4) Azzam et al. (2016); (5) Harris et al. (2006); (6) Kramida et al. (2019); (7) Coles et al. (2019); (8) Yurchenko (2015); (9) Sousa-Silva et al. (2014); (10) Schwenke (1998); (11) McKemmish et al. (2016).

Planetary spectra and molecular templates


HR spectra computed with a line-by-line model (same opacities as Exo-REM)

Example: PetitRadTrans (https://petitradtrans.readthedocs.io/en/latest/)

Atmospheric characterisation at medium/high spectral resolution

 $R=\frac{\lambda}{\lambda\lambda}<1000$ (e.g. HST, ARIEL) **Low resolution:** \rightarrow absorption bands $R=\frac{\lambda}{\lambda\lambda}\sim 1000-20000$ □ Medium resolution: (e.g. JWST, VLT/SINFONI) \rightarrow strong molecular lines $R=\frac{\lambda}{\lambda\lambda}>20000$ □ High resolution: (e.g. SPIRou, VLT/CRIRES, VLT/ESPRESSO) \rightarrow resolve line shape and doppler shift 6×10⁴ R=20 000

