Formation and orbital evolution of (young) planetary systems

 Clément Baruteau (CNRS/IRAP)Evry Schatzman school, 7 October 2021

Menu of the day

- Observational constraints (exoplanets)

- Theory: selection of open questions and recent progress

Planet formation and orbital evolution

planet formation
core accretion?

gravitational instability?

Planet formation and orbital evolution

planet-disc interactions

change planets semi-major axes (planetary migration)
damp eccentricities and inclinations
core accretion?

gravitational instability?

Planet formation and orbital evolution

planet-disc interactions

planet formation
change planets semi-major axes (planetary migration)
damp eccentricities and inclinations
core accretion?

planet-planet interactions

also change semi-major axes! pump eccentricities and inclinations

Planet formation and orbital evolution

disc dispersal (after 1-10 Myr)
. interactions with the central star (tides, stellar evolution) or with nearby stars
. planet-planet interactions

- planets-debris disc interactions (further formation of terrestrial planets and migration, like in the "Nice model")

~4800 exoplanets confirmed in 25 years

~1 in 3 are in multiple-planet systems

0.0	0.2	0.4	0.6	0.8	1.0

$\%$ found around $\sim 1 \%$ of Sun-like stars Mayor+ 2011, Wright+ 2012

* low eccentricity: disc-planet interactions or star-planet tidal interactions?
$\% \sim 1$ in 3 has large projected obliquity: a dynamical origin?

\because handful of detections around few Myr stars

~4800 exoplanets confirmed in 25 years

~ 1 in 3 are in multiple-planet systems

- hot Jupiters
$\%$ found around $\sim \mathbf{1} \%$ of Sun-like stars Mayor+ 2011, Wright+ 2012
\% low eccentricity: disc-planet interactions or star-planet tidal interactions?
$\% \sim 1$ in 3 has large projected obliquity: a dynamical origin?

\% handful of detections around few Myr stars eg, Donati+ 2016, Yu + 2017, Plavchan+ 2020

0.0	0.2	0.4	0.6	0.8	1.0

0.0	0.2	0.4	0.6	0.8	1.0
				eccentricity	

$\%$ found around $\sim \mathbf{1} \%$ of Sun-like stars Mayor+ 2011, Wright+ 2012

* low eccentricity: disc-planet interactions or star-planet tidal interactions?
$\% \sim 1$ in 3 has large projected obliquity: a dynamical origin?
\% handful of detections around few Myr stars eg, Donati+ 2016, Yu+ 2017, Plavchan+ 2020
- warm Jupiters
\therefore found around $\sim 10 \%$ of Sun-like stars Cumming+ 2008, Mayor+ 2011
* median eccentricity ~ 0.25 : dynamical interactions? disc-planet interactions?
eg, Debras+ 2021

Selected open questions

- about protoplanetary discs:
\therefore what drives the dynamical evolution of the disc gas? turbulence? winds?...
\% How do they grow dust to planetesimal $(\sim \mathrm{km})$ sizes?
\% what is responsible for the many structures we see in the discs emission? planets?
- about planetary formation:
\% what primarily drives the growth of planetary cores? pebbles? planetesimals?
\therefore how relevant is disc fragmentation in forming giant planets?
- about planets orbital evolution:
\% how relevant are disc-planets interactions in shaping planetary systems?
- about the central star:
\therefore how is planet formation and orbital evolution changed with an M dwarf star?

What drives the gas evolution in discs?

- Turbulent transport of angular momentum due to the Magneto-Rotational Instability (MRI)? \rightarrow linear instability arising in discs dynamically coupled to a weak magnetic field

Balbus \& Hawley 1991

B field line

What drives the gas evolution in discs?

- Turbulent transport of angular momentum due to the Magneto-Rotational Instability (MRI)? \rightarrow linear instability arising in discs dynamically coupled to a weak magnetic field

Balbus \& Hawley 1991

B field line

Torque on A due to magnetic tension $\Gamma \sim r_{A} \times F_{\phi}<0$
\rightarrow A's specific angular momentum (\mathbf{j}) decreases ($\Gamma=\mathrm{dj} / \mathrm{dt}$)
\rightarrow A moves further in! $\left(j=r v_{\varphi}=\sqrt{G M_{\star} r}\right)$

What drives the gas evolution in discs?

- Turbulent transport of angular momentum due to the Magneto-Rotational Instability (MRI)? \rightarrow linear instability arising in discs dynamically coupled to a weak magnetic field

Balbus \& Hawley 1991

B field line

Torque on B due to magnetic tension $\Gamma \sim r_{B} \times F_{\phi}>0$
\rightarrow B's specific angular momentum (j) increases ($\Gamma=\mathrm{dj} / \mathrm{dt}$)
$\rightarrow \mathbf{B}$ moves further out! $\left(j=r v_{\varphi}=\sqrt{G M_{\star} r}\right)$

What drives the gas evolution in discs?

- Turbulent transport of angular momentum due to the Magneto-Rotational Instability (MRI)? \rightarrow linear instability arising in discs dynamically coupled to a weak magnetic field

Balbus \& Hawley 1991

\rightarrow the disk reaches a quasi steady-state with turbulent mass accretion rates in fair agreement with observed stellar accretion rates $\left(\dot{M} \sim 10^{-8} \mathrm{M} \odot \mathrm{yr}^{-1}\right)$

What drives the gas evolution in discs?

- Turbulent transport of angular momentum due to the Magneto-Rotational Instability (MRI)?
\rightarrow linear instability arising in discs dynamically coupled to a weak magnetic field
Balbus \& Hawley 1991
protoplanetary disks are in fact poorly ionized!
interstellar cosmic rays

\rightarrow Ohmic diffusion (electrons-neutrals collisions) and ambipolar diffusion (ions-neutrals collisions) quench MRI in a large fraction of the bulk disc

Gammie 1996, Bai 2013, Simon+ 2013, Lesur+ 2014...
\rightarrow overall consistent with observations of the (small!) non-thermal broadening of molecular gas lines in discs

What drives the gas evolution in discs?

- Vertical transport (extraction) of angular momentum by magneto-centrifugal winds?
\rightarrow wind-driven laminar accretion if a vertical B field threads the disc
eg, Blandford \& Payne 1982, Béthune+ 2017

\rightarrow observational support via [O I] kinematics? eg, Banzatti+ 2019
\rightarrow impact on planet formation and evolution? (global models needed)

How do planetesimals form?

dust grains

pebbles

cm
planetesimals

km
planet cores

$\sim 10^{3} \mathrm{~km}$

surface forces

gravity

I think you should be a little more specific, here in Step 2

How do planetesimals form?

growth beyond pebble sizes isn't easy because of:

- rapid radial drift of solids in the disc

How do planetesimals form?

growth beyond pebble sizes isn't easy because of:

- rapid radial drift of solids in the disc
- bouncing at low relative velocities

Weidlling+ 2012 (mm-sized particles @ $\sim 0.1 \mathrm{~m} / \mathrm{s}$)

How do planetesimals form?

growth beyond pebble sizes isn't easy because of:

- rapid radial drift of solids in the disc
- bouncing at low relative velocities
- fragmentation at large relative velocities

How do planetesimals form?

but may work if a large target experiences repeated collisions with smaller projectiles. This is mass transfer

Fig. 10.- Experimental example of mass transfer in fragmenting collisions. All experiments were performed in vacuum. (a) A mm-sized fluffy dust aggregate is ballistically approaching the cm -sized dusty target at a velocity of $4.2 \mathrm{~m} / \mathrm{s}$. Projectile and target consist of monodisperse SiO_{2} spheres of 1.5μ m diameter. (b) Shortly after impact, most of the projectile's mass flies off the target in form of small fragments (as indicated by the white arrows); part of the projectile sticks to the target. (c) - (e) The same target after 3 (c), 24 (d), 74 (e) and 196 (f) consecutive impacts on the
Johansen+ 2014 (PPVI) same spot. Image credit: Stefan Kothe, TU Braunschweig.

How do planetesimals form?

growth beyond pebble sizes isn't easy because of:

- rapid radial drift of solids in the disc
- bouncing at low relative velocities
- fragmentation at large relative velocities
but may work if a large target experiences repeated collisions with smaller projectiles. This is mass transfer

How do planetesimals form?

- Dust drag on the gas can slow down radial drift and help growth
eg, Gonzalez+ 2017
- It also leads to a linear instability: the streaming instability

Youdin \& Goodman 2005
\rightarrow formation of dust filaments with a very large concentration of solids

Formation of dust filaments by the streaming instability The dust-to-gas density ratio can reach a few x 1000 Johansen+ 2014 (PPVI)

How do planetesimals form?

- Dust drag on the gas can slow down radial drift and help growth
eg, Gonzalez+ 2017
- It also leads to a linear instability: the streaming instability
\rightarrow formation of dust filaments with a very large concentration of solids
\rightarrow dust's self-gravity causes the dust filaments to collapse which, with the help of collisions, can typically form $\sim 100 \mathrm{~km}$-sized planetesimals

- Most studies assume dust particles are compact spheres... what if they are not?

Why so many structures in the discs emission?

Elias 27

MWC 758 disc seen byALMA and SPHERE (see Baruteau+ 2019 for a model of this disc with 2 planets)

- what structures are indirect signatures of planets?

Why so many structures in the discs emission?

Elias 27

PDS 70
(~ 5 Myr, K7 star)
 a few Jupiter-mass companion at ~20 au

20 ua

protoplanetary disc around PDS 70 viewed by SPHERE (@~2.1 $\mu \mathrm{m}$, left, Müller+ 2018) and by ALMA (@~0.9mm, right, Benisty+ 2021)

- what structures are indirect signatures of planets?
- if planets, except in the PDS 70 disc, why don't we see them directly? Would these structures constrain planet formation or migration?

Why so many structures in the discs emission?

Riols+ 2020

- if not planets, what else? zonal flows in low-turbulent discs?

How do giant planets grow?

- Planetary formation: planetesimals vs. pebbles accretion
* the conventional mechanism of core growth by planetesimals accretion cannot form giant gas planets at large orbital separations (≈ 10 au: core growth is too slow!)

4-7 $\mathrm{M}_{\mathrm{Jup}} @ 68 \mathrm{au}$
7-10 $\mathrm{M}_{\mathrm{Jup}} @ 38 \mathrm{au}$
star HR 8799

* 7-10 M $\mathrm{Jup}_{\text {@ }} 24 \mathrm{au}$

How do giant planets grow?

- Planetary formation: planetesimals vs. pebbles accretion
* the conventional mechanism of core growth by planetesimals accretion cannot form giant gas planets at large orbital separations (≈ 10 au: core growth is too slow!)
\rightarrow formation by disc fragmentation?

How do giant planets grow?

- Planetary formation: planetesimals vs. pebbles accretion
* the conventional mechanism of core growth by planetesimals accretion cannot form giant gas planets at large orbital separations (≈ 10 au: core growth is too slow!)
\rightarrow formation by disc fragmentation?
\rightarrow growth of planetary cores accelerated by pebble accretion?

Lambrechts \& Johansen / Modica / Knowable

What drives the orbital evolution of planets?

- disc-planet interactions?

What drives the orbital evolution of planets?

- disc-planet interactions?

$\leftarrow \log$ of gas surface density (in units of $M_{\star} / r_{p}{ }^{2}$) of a disc perturbed by a 3 Jupiter-mass planet
* long-standing, zeroth-order issue of way-too-rapid inward migration of low-mass planets probably solved...
\therefore... next-order issue of rapid inward migration of massive planets is still standing!
\rightarrow need more studies for low-turbulent discs with magnetized winds
\rightarrow need to further develop global models of planet formation \& evolution + disc evolution in 2D

What drives the orbital evolution of planets?

- how about planet-planet interactions and star-planet interactions?
$\%$ likely origin for hot Jupiters with large orbital obliquities, and for eccentric warm Jupiters
\rightarrow an alternative scenario for eccentric warm Jupiters: disc migration inside a cavity Debras+ 2021

And what if the star is an M dwarf?

- M dwarfs host $\mathbf{\sim 1 0 \%}$ of the confirmed exoplanets so far (biased)
- few giant planets around M dwarfs, but a large diversity in planet-to-star mass ratio

And what if the star is an M dwarf?

- the lower the mass of the star...
\therefore the lower the mass of the disc, its size, but also its surface density
\% the lower the mass accretion rate (lifetime weakly dependent on stellar mass?)
\therefore the longer the orbital period
\rightarrow the slower to grow planet cores by planetesimals accretion (less massive cores thus form)
\rightarrow same for planet cores growing by pebbles accretion! Coleman+ 2019, Liu+ 2019
\therefore the cooler the disc at a same radial distance, which affects the migration timescale of planetary cores

blue: inward migration - red: outward migration

And what if the star is an M dwarf?

- the lower the mass of the star...

Burn+ 2021
\% the fewer giant planets form (by planetesimals accretion), but their typical mass tends to be similar
\therefore no giant planets predicted for $\mathrm{M}_{\star} \leq 0.5 \mathrm{M}_{\odot}$

	Core ice mass fraction					
0.0	0.1	0.2	0.3	0.4	0.5	0.6
		1				

And what if the star is an M dwarf?

- the lower the mass of the star...
\% the fewer giant planets form (by planetesimals accretion), but their typical mass tends to be similar
\therefore no giant planets predicted for $\mathrm{M}_{\star} \leqslant 0.5 \mathrm{M}_{\odot}$
* similar predictions with only pebble accretion! Liu+ 2019
\% do giant planets around M dwarfs have to form via disc fragmentation?

radial distance where cores form

EXOSYSTĖMES II - STRUCTURE

Toulouse, 30 Nov. - 2 Déc. 2021

NAVIGATION

Accueil

Inscription

Déposer une contribution
Liste des participants

Sponsors

SUPPORT

CONTEXTE

La série d'ateliers ExoSystèmes, que nous poursuivons cette année, a pour but de structurer la communauté française autour de la formation des systèmes étoiles-planètes, leur évolution, leur fin de vie, la diversité des planètes et de leur architecture orbitale, ou encore leur habitabilité autour de différents types d'étoiles. Son but est de favoriser et renforcer les multiples synergies instrumentales, observationnelles et théoriques de nos communautés en France.

Ce deuxième atelier, ExoSystèmes II, est ouvert à toute la communauté stellaire et (exo)planétaire, et aura pour thème général 'Structure', couvrant par là-même une gamme étendue des propriétés des systèmes planétaires depuis l'étoile jusqu'aux planètes. Quatre sessions sont anticipées: (i) structure interne et atmosphères (exo-)planétaires, (ii) multiplicité stellaire et planétaire: architecture orbitale des exosystèmes, (iii) structures dans les disques protoplanétaires: exosystèmes en formation? et (iv) structure et activité stellaires: effets sur la détection et l'évolution planétaires.

Nous encourageons tout particulièrement les jeunes chercheuses et chercheurs à soumettre des contributions orales pour cet atelier.

